Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms

نویسندگان

  • Dmitry S. Yershov
  • Steven M. LaValle
چکیده

This paper addresses theoretical foundations of motion planning with differential constraints in the presence of obstacles. We establish general conditions for the existence of resolution complete planning algorithms by introducing a functional analysis framework and reducing algorithm existence to a simple topological property. First, we establish metric spaces over the control function space and the trajectory space. Second, using these metrics and assuming that the control system is Lipschitz continuous, we show that the mapping between open-loop controls and corresponding trajectories is continuous. Next, we prove that the set of all paths connecting the initial state to the goal set is open. Therefore, the set of open-loop controls, corresponding to solution trajectories, must be open. This leads to a simple algorithm that searches for a solution by sampling a control space directly, without building a reachability graph. A dense sample set is given by a discrete-time model. Convergence of the algorithm is proven in the metric of a trajectory space. The results provide some insights into the design of more effective planning algorithms and motion primitives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-Min averaging operator: fuzzy inequality systems and resolution

 Minimum and maximum operators are two well-known t-norm and s-norm used frequently in fuzzy systems. In this paper, two different types of fuzzy inequalities are simultaneously studied where the convex combination of minimum and maximum operators is applied as the fuzzy relational composition. Some basic properties and theoretical aspects of the problem are derived and four necessary and suffi...

متن کامل

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

LP problems constrained with D-FRIs

In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of ...

متن کامل

Long-term Planning of Optimal Placement of Distribution Transformers to Improve Reliability and Power Quality with the Approach of Reducing Costs and Losses

One of the most critical and complex issues in long-term planning of distribution networks is the optimal placement of distribution transformers. In this paper, the optimal placement of distribution transformers was investigated based on a complete and multi-objective function. In the proposed method, location, optimal capacity, and the service area are determined by minimizing costs (investmen...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010